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A class of cellular automata models is considered, consisting of a quiescent hydrodynamic 
lattice gas with multiple-valued passive labels or “colors.” Controlled sources of particle color 
are introduced on the lattice, as are collisions that change individual particle colors while 
preserving net color. This lattice gas model is shown to be equivalent, in steady state, to a 
solution to a Poisson equation, with source function proportional to the rate of color 
introduction and inversely proportional to the intrinsic color diffusivity. The rigorous proofs 
of the essential features of the multicolor lattice gas are facilitated by use of an equivalent 
“subparticle” representation in which the color is represented by underlying two-state “spins.” 
Theorems deduced in this way are valid for arbitrary numbers of allowed color values. For 
example, it is shown that the color diffusivity depends only on the density, for all models of 
this type. Some preliminary investigations of the efftciency and accuracy of the method are 
also discussed. Rates of relaxation to the steady state are estimated and schemes for intro- 
ducing Dirichlet and Neumann boundary conditions are described. Two simple numerical test 
cases are presented that verify the theory. These results, most of which easily generalize to 
three dimensions, suggest that a lattice gas of this type may be a useful tool for solution of 
the Poisson equation. i” 1990 Academic Press. Inc. 

1. INTRODUCTION 

Recent developments in the theory of cellular automata (CA) have suggested that 
certain type of lattice gas models may become useful for numerical solution of fluid 
or diffusion type equations [l-8]. Instead of using numerical methods to directly 
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solve the equations of physical interest, the CA approach adopts a different 
philosophy, which makes contact with the original physical model principally at the 
level of conservation laws and symmetries. First, a discrete microscopic many-body 
system that resides on a lattice is designed. This lattice gas (CA) may be quite 
artificial and need not have any detailed or direct correspondence to real world 
microphysics. Then one attempts to show that the macroscopic (averaged) behavior 
of the lattice gas obeys the original equations of physical interest. 

To formulate the microscopic CA, one needs to define microscopic rules for CA 
particle motion according to conservation and symmetry principles that are implied 
by the macroscopic physics. From a purely theoretical perspective (leaving aside 
questions of numerical efficiency) a CA model is successfully designed if one can 
prove that its averaged properties accurately reproduce solutions of the equations 
describing the physical system of interest. In that case, it is reasonable to attempt 
to simulate the physical system by computing CA dynamics and extracting 
appropriate averages. In order to maintain intrinsic advantages that CA models 
might have, particularly when run on computers with advanced parallel architec- 
tures, it is desirable to design CA systems according to a few general principles: (a) 
dynamical variables on the lattice are integer or Boolean; (b) microscopic dynami- 
cal rules are local on the lattice; i.e., the update of the state variables at each lattice 
node involves information only on that node or neighboring nodes; (c) all nodes 
are updated simultaneously and independently. Lattice gas models that obey these 
guidelines will therefore involve no roundoff error or numerical instability and will 
also be suitable for massively parallel computing environments. 

It is important that we emphasize at the onset that the methods by which CA 
models are currently being developed, including the approach adopted here, are not 
yet mature. To deduce the relationship between microscopic and macroscopic 
behavior, we rely heavily on discrete kinetic theory, multiscale expansions, and the 
existence of well-behaved ensemble averaging procedures [2]. The accuracy of the 
key relations deduced in this way will be at best of an asymptotic variety-rigorous 
proofs of convergence are beyond the current state of the art. Only through con- 
tinued development of the analytical theory and careful comparison with numerical 
experiments, will the potential of the CA approach be realized. Consequently, our 
motivations here are, first, to define a new CA dynamical model, building on recent 
successes in the area (e.g., [l&S]) and, second, present rudimentary numerical tests 
to evaluate the analytical deductions. 

In this paper, we address the possibility of using CA methods to determine 
solutions to the Poisson equation, 

VA(x) = J(x), 

where V2 is the Laplacian operator and the source function, J, is a specified 
function of space. Associated with this equation there are typically two kinds of 
boundary conditions, Dirichlet and Neumann. In the former, the value of A is 
specified at the boundary, while in the latter, the derivative of A normal to the 
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boundary is given. Having defined the boundary condition and the sources, the 
solution of the Poisson equation is uniquely determined. Solving the Poisson 
equation has great practical importance in both basic and applied sciences and 
many computational methods have been developed for this purpose. For many 
problems, conventional methods are adequate [15], however, for some cases, 
particularly in three dimensions or those involving large grids or complex 
boundaries, these methods may lack speed and precision. Thus, it is possible that 
a CA method for solving the Poisson equation might eventually provide some 
advantages over conventional methods in some cases. However, it is premature to 
consider optimization of the present model or detailed comparisons of its merits 
relative to classical techniques and we will not consider these in the present paper. 

In the following sections, we formulate a CA system and demonstrate that its 
averaged steady solution satisfies the Poisson equation. In a previous work [7] it 
was shown that, upon introducing a dynamically passive particle label or “color” 
to the hydrodynamic lattice gas of Frisch, Hasslacher, and Pomeau, (hydro-CA) 
[ 11, the diffusion type equation can be obtained, 

aA(x, t) 
----+vv [v(x, t) A(x, r)] = DV’A(x, t), at 

where the quantity A is the averaged color distribution, D is a positive definite 
quantity referred to as the diffusion coefficient or diffusivity, v is the averaged CA 
particle velocity, corresponding to the hydrodynamic fluid velocity, which evolves 
independently of the color distribution. If there is no external force, spatial varia- 
tions of v decay in time so that eventually, depending on boundary and initial con- 
ditions, the velocity either vanishes or becomes uniform, The interesting dynamical 
phase of this CA model occurs prior to this decay and represents the behavior of 
a passive scalar in a hydrodynamic fluid. A straightforward extension to the passive 
scalar model is made by introducing a color source into the system that changes the 
numerical value of particle labels at specified sites on the lattice, but has no effect 
at all on the CA particle motion. The color source may be represented by intro- 
ducing a color source function I on the right-hand side of Eq. (1). 

If this CA system evolves for a sufficiently long time that it reaches a steady state 
and v =O, we can immediately see that the desired Poisson equation will be 
obtained, with the function J associated with Z/D, the averaged color source dis- 
tribution divided by the diffusion coefficient. This simple extension of the previous 
passive scalar CA represents the spirit of the model developed below, but is far from 
adequate as a CA model for solution to the Poisson equation. In fact, the model 
is useless unless one can precisely specify the value of J as a function of position. 
Two problems are apparent. First, the relationship between the rate of coloring par- 
ticles and the numerical value of I must be established, The previous passive scalar 
model [7] allows only two values of the particle label, say 0 or 1. Thus, for exam- 
ple, a positive color source that attempts to increase the particle label by 1 can do 
so only when a particle is present at a source site with label 0. Otherwise the color 
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source generates an overflow and is ineffective. This causes the rate of effective 
particle coloring to have a complicated dependence on both the rate of attempted 
particle coloring and the instantaneous local color population. The latter 
dependence is particularly undesirable since it causes Z to depend on A. A second 
difficulty is that one must not only determine the diffusion coefficient, but must also 
establish that it is independent of A and its derivatives for the possibly wide range 
of anticipated spatial variations of A. 

In this paper, we show that these difficulties can be overcome by inclusion of 
colors that can take on an arbitrarily wide range of integer values. We analytically 
show that this generalized CA system can lead to the two-dimensional Poisson 
equation in certain limits and with predicted accuracy. In developing this class of 
“multicolor” CA models, several new features are included. Color collisions are 
introduced, providing a variable rate of relaxation to steady conditions. Also, to 
facilitate proof of key theorems for arbitrary ranges of color, each particle’s color 
is viewed as comprised of appropriately large number of subparticle two state 
“spins.” 

In Section 2, the microscopic definitions, dynamic rules as well as their associated 
macroscopic (averaged) quantities for the multi-color CA system are described. In 
Section 3 we describe the equivalent analytical representation of the multicolor CA 
particles in terms of underlying “multispin” CA quanta. In Section 4 we analytically 
derive the equation governing the evolution of the averaged spin distribution and 
reduce it to the labeled particle or multicolor representation. This equation becomes 
the desired Poisson equation in certain limits. The color diffusivity of this CA is 
calculated in Section 5 for two special cases. Details of implementation of boundary 
conditions and sources are discussed in Section 6. Two numerical examples are 
given in Section 7. The results are summarized and future directions are indicated 
in Section 8. 

2. MULTICOLOR CA MODEL 

We consider a system consisting of a large number of identical particles with the 
same mass on a triangular lattice, as in the usual two-dimensional CA lattice gas 
system [l, 3, 71. The choice of the triangular lattice is due to the requirement that 
the tensors appearing in the derivation of fluid theory, which are up to fourth rank, 
be rotationally symmetric on the two-dimensional lattice [2, 31. Each node of the 
lattice is connected with its six neighboring nodes by line segments with equal 
length c, lying along the directions indicated by the unit vectors 6, = c[cos(2na/6), 
sin(2rca/6)], a = 1, . . . . 6. CA particles reside on the nodes of the lattice and can only 
move along the six directions. All particles have the same speed (= c) so that from 
discrete time t to t + 1 each of them moves from its original node to one of the six 
neighboring nodes. Usually it is convenient to set c = 1 and adopt the convention 
that distances are measured in units of the node separation and speeds are 
measured in units of the particle speed. At each node of the lattice we define six par- 
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title states using the six different C,, a = 1, . . . . 6. By assumption, no more than one 
particle can occupy the same state at any node. Therefore, if we let N,(x) represent 
the particle occupation number in state C, at a node at a certain location x, then 
N,=O or 1. Furthermore, let S= (A’,; a= 1, . . . . 6) denote the set of occupation 
numbers that specifies the state of a node. If S is given at all nodes, the CA state 
is completely defined at a given time t. 

We now impose rules for the mechanical motion of CA particles. These will be 
identical to those of the standard hydrodynamic CA [ 1,2, 71. Subsequently, 
additional degrees of freedom or “colors” will be imparted to the particles. It is 
important to keep in mind that when color is summed over, mechanical motions 
reduce to the hydrodynamic CA case. 

There are two processes for updating the system from a certain time step t to the 
next time step t + 1, referred to as streaming and scattering. In the streaming 
process, a CA particle in the state 6, at a certain node moves to the same state at 
the neighboring node in the direction s,, i.e., 

N,(x, t) --) N,,(x + i,, t + 1). 

In the scattering process, the particles at a node in a certain state S (= {N,; 
a= 1, . . . . 6)) are transformed, with a given probability, into a new state S’ (= {N:,; 
a = 1, . . . . 6)) where allowed transformations must satisfy 

corresponding to conservation of mass and momentum at each node due to 
scattering. 

Without further specification, these CA rules define a system identical to the 
usual hydro-CA system [2, 31, which is governed completely by the following 
microscopic equation of motion [2] 

N,(x + g,, t + 1) = N,,(x, t) + A,, (2) 

where A, represents the change of N, by the scattering described above. It has been 
shown [2, 31 that the macroscopic averaged behavior of this CA obeys the 2D 
hydro-CA fluid equations 

an 
z+V.(vn)=O 

a(nv) F+V-(gnvv)= -iV(n-gnv*)+vV’(nv) 
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with the averaged particle density, n, and the averaged particle velocity, v, defined 
by 

nv=c P,(N,,). 

In the above equations the brackets, ( ), represent the averaging operation that 
connects the discrete, microscopic state of the CA with the macroscopic state, which 
is, in principle, continuous and smoothly varying. In analytical manipulations, the 
averaging is taken to be an ensemble average. In computations, space or time 
averages are used instead. Generally, equivalence of space-time averages to ensem- 
ble averages must be proven, e.g., by examining the ergodicity of the dynamics. For 
the present, however, we shall simply assume this equivalence. The quantity g in 
Eq. (4) is equal to g(n) = (3 - n)/(6 -n). Th e viscosity v( =v(n)) in this CA system 
is always positive definite and is a function of density. As in real fluids when there 
is no external forcing, it can be shown that v = 0 (or, for certain boundary condi- 
tions, a uniform constant) and n = const at t --f cc. Moreover, by the definition of 
the velocity, v = 0 if at every node n = 6. This is because N, = 1 for all states 2, and 
everywhere on the lattice in this special case, for which the hydro-CA equations are 
trivially satisfied. 

To further specify the CA constructed for our present purposes, an additional 
degree of freedom is introduced in the following way. Each CA particle, while 
continuing to obey the dynamical rules described above, carries a label or “color” 
quantum c, which may take on values in the range -eO, -go + 1, . . . . go - 1, oo. 
The label is referred to as a color to emphasize the lack of influence of the value 
of the label on the mechanical motion of the particle, a property carried over from 
the pure passive scalar CA [7]. Although the particle motion is independent of the 
color, new CA rules for the color are introduced below that distinguish its behavior 
from the pure passive scalar case. The statistical distribution of color will play an 
essential role in the present model. To describe the CA state taking the color into 
account, we use Ns (=O, 1) to denote the occupation of a o-labelled particle in 
state g,. Particles of different color are still considered to be indistinguishable in the 
sense that the Fermi exclusion rule applies to the particles, without regard for the 
value of cr. Therefore, as long as a state t;,, at a given node is occupied, no other 
particle can occupy the same state no matter what r~ value it carries. As a result we 
have 

1 N;= N,,=O, 1, 

where N, is the particle occupation number defined above. The value of N, 
everywhere in the lattice defines the “colorblind” particle distribution. Whenever 
color is summed over in this way the properties of this system will reduce to the 
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case with no color labels, since all streaming and scattering rules for particles 
without regard to color are the same as in the hydro-CA [l, 2, 71. 

The color values on each particle are carried along by the particle from one 
position to another as the particle moves, with no effect on its motion, but we also 
will allow color changes of certain types. Color collisions may occur, that changes 
a given particle label value in the following way. First, every collision conserves the 
total color value at each lattice node, so that 

where the N,” and N:” denote the color g particle occupation before and after a 
scattering. Furthermore, if there are N particles involved in a collision, having color 
values f~, , 02, . . . . oN, the color values tend to be redistributed according to a scheme 
that brings their color values towards color equipartition after the collision, i.e., the 
new color value for each particle tends to be close to C,“_ 1 ai/N. The post-collision 
color values still must be in the set { -oO, -go + 1, . . . . go - 1, oO}. For example, if 
there are two particles at a given node having color values CJ~ = 3 and CT~ = -1, 
respectively, the new color values for these two particles after a collision will most 
likely become CJ~ = oz = 1, if the possible labels are -eo, . . . . -1, 0, 1, . . . . o,,. 
According to these rules the microscopic equation of motion, taking into account 
particle color, may be written as 

N;(.x + S,, t+ 1 ) = N;(x, f) + A;, (6) 

where AZ represents the change in Nz by scattering. From above scattering rules we 
immediately have 

since summing over all possible color values (6) restores the colorblind relations 
that obey the hydro-CA equation (2). Moreover, conservation of the total color in 
scattering implies that C,. u aA: = 0. 

In order to produce a nontrivial averaged color distribution in the steady state, 
and for the purpose of formulating the Poisson equation CA, color sources are 
introduced in the system. When particles arrive at a node where there is a color 
source, the total color value of these particles may be increased (or decreased) by 
a fixed amount. We have in mind that the source function in the Poisson equation 
will be modeled by the averaged color sources, in the sense that we seek to 
formulate a model in which the color source strength is linearly related to the term 
J(x) in the Poisson equation (as we will discuss in detail below). As with color 
collisions, the color sources are also designed not to affect at all the colorblind 
particle motion. Color sources change only the particle labels and not the particle 
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motion. In this way the microscopic equation of motion can be further generalized 
to the form 

N::(x+k/, r+ l)=NZ(x, t)+d;+z;(X), (7) 

where Z’; is the change of Nz by a color source at x. Since particle motion is 
unaffected by the color source, we have 1, ,Z’z= 0. This indicates that the color 
source changes the value of the particle label CJ, but does not accomplish any net 
creation or annihilation of particles in any state i,. Whenever a particle with one 
value of 0 is destroyed, exactly one other particle with another value of (r is created. 

Ensemble averaging Eq. (7) and summing over a we obtain 

(8) 

where n” is defined as n” E C, ns and ns = (Nz). The quantity n” denotes the 
averaged number of particles having color 0 at a given node at position x. (Up to 
a resealing, we can also refer no as the color 0 particle density at a certain position.) 
The last term on the right-hand side of Eq. (8) is just the averaged rate of the total 
color value increase at position x. The collision term vanished in Eq. (8) due to the 
color conservation property x0, u a(dz) = 0 that was mentioned earlier. The 
averaged color field A is defined as 

where n ( z C,, u (N z ) = 2, (N,)) is the averaged colorblind particle number at a 
certain node, which, up to a scaling factor, can be considered as the particle density 
at a given position. 

This completes the specification of the microscopic rules for the multicolor CA 
with color sources, and the connection with the relevant macroscopic quantities. In 
the following sections we will show that, upon properly choosing the microscopic 
boundary rules, the above described CA will evolve in such a way that the steady 
state color field A will obey the Poisson equation. 

3. MULTISPIN SUEPARTICLE REPRESENTATIONS 

The rules described in the previous section completely define the microscopic 
behavior of our CA model, except for the formulation of boundary conditions, 
which will be discussed in a later section. We must now set out to prove that this 
CA can provide solutions to the Poisson equation. Basically what needs to be 
shown is that the microscopic CA dynamics, represented by Eq. (7), implies steady 
macroscopic averaged color distributions that satisfy the Poisson equation with a 
known precision. Moreover, to be useful, one needs to be able to control color 
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sources so that they correspond to physical sources. If the number of allowed colors 
were restricted to a small number, it would be possible to proceed directly from 
Eq. (7) as was done in Ref. [7], where G was permitted just two values. However, 
we will show that in the present case it is advantageous and probably necessary for 
accuracy to formulate the model with many more than two colors. Therefore, the 
analytical development of the model needs to be cast in terms of a larger, and 
preferably arbitrary, number of r~ values. Equation (7) is not easy to deal with 
analytically for arbitrary numbers of allowed values of g. In particular, the com- 
plexity of the collision term A,” rapidly increases as the maximum color value cD 
increases and there are a large number of color values involved. A new approach 
is needed. 

We have constructed a mathematical device that allows the theory to be carried 
out for arbitrary numbers of allowed particle colors. The procedure is to decompose 
particles and their colors into simpler “subparticles” in such a way that the 
behavior of the system is completely equivalent to what has been described above 
when viewed at the “color” and “particle” level. The subparticles are many in num- 
ber for each particle present and possess degrees of freedom that act somewhat like 
quantum mechanical spins. The “spins” and “subparticles” replace the “colors” and 
“particle” for purposes of analytical manipulations, but finally the results reduce to 
the multicolor CA model described above. Multicolor particle CA models with 
arbitrary numbers of allowed colors can be easily built by proper choice of the 
underlying multispin, subparticle representation. Thus we temporarily, but at some 
length, introduce an equivalent “multispin” subparticle model. 

Every particle in the multicolor CA system consists of the same number of 
subparticles, designated as 2M,. Subparticles are of two varieties, distinguished 
according to their associated spin value, which may have a value of either to or t0 
({,,= -to). The spin associated with a subparticle will not be modified by either 
streaming or scattering, but will be possibly changed only by color sources. A 
particle may carry different number of “to” and “lo” subparticles. We let the color 
value of a particle be related to the difference in number of “t;,” and “to’, spin 
subparticles, i.e., the color value of a particle o= lo x (the number of “to” 
subparticles - the number of “4;” subparticles) in this particle. Color is defined to 
be the algebraic sum of the subparticles’ spin, i.e., the color value is a net spin value. 
(The number of “to” subparticles + the number of “p’ subparticles in a particle = 
2M,.) Therefore we have the maximum color value (maximum net spin value in a 
particle) CT~ = 2M,5,, and 0 = 0 if the number of “5: and “[i’ subparticles in the 
particle are equal. For the color value range 0 = { - oO, -go + 1, . . . . co - 1, a,>, we 
get to = i. The motivation for referring to the subparticle quantum to as a spin can 
be made clear by analogy with a set of spin 4 particles in a magnetic field, wherein 
the net component of the spin along the magnetic field takes on values determined 
by summing individual spin, each of which is aligned or anti-aligned with the field 
direction. We also see now that the particle color value is itself a spin-like quantity, 
which may be mixed by spin-spin collisions while conserving the net local spin and 
which will also be modified by color sources. For the sake of clarity we will 



442 CHEN, MATTHAEUS, AND KLEIN 

continue to use the term “color” for the values of particle labels and the term “spin” 
for the subparticle quanta, though the distinction is not fundamental. 

If we define M:(o) as the number of 5 (= to or cO) subparticles in a particle with 
color CJ at state t?,, then we immediately obtain the two relations 

2A4,N; =I M:(o) 

where Nz ( = 1,O) is the occupation number of a color [T particle in state i,. These 
are the basic equations that relate color and spin quanta. Equation (9) indicates 
that there are no “free” subparticles; i.e., a subparticle can only exist in a particle. 

Now let Mi z x0 M:(a) be the total number of “5” subparticles in the state b,, 
at a node, without regard for the B of the associated particle. Since 

n=x (Nz)= 
“. u 

and 

it is clear that A42 and its ensemble average contains all relevant information about 
the macroscopic color field A. The second equation above was obtained using the 
relation 

0 c M:(a) = o(2MoN:) = 2M,(aN:) = 2M, C i”Mz(a). 
5 5 

From the rules governing the evolution of the colored particles, we can find the 
corresponding rules for the multispin subparticles, in a way that maintains the 
complete equivalence of the two representations. The subparticle streaming rule is 
simply stated that a “<” subparticle in state f^, at position x at time f will move to 
position x + P, at t + 1. 

Rules for implementing subparticle scattering are also straightforward, but 
require a little more care in formulation. Each particle contains 2M, subparticles. 
When a certain collection of particles at a node, in specific $, states, are chosen to 
have a color scattering event, rules are needed to control the mixing of the subpar- 
title spins so that the net color of all the particles is unchanged and the mechanical 
motion is unaffected. We choose the following scheme. The subparticles that 
constitute the set of interacting particles at a node forget which particle they 
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originally came from. The particles are then reconstituted, each with 2M, sub- 
particles selected at random from those available. The number of particles is 
unchanged in the process and the set of P, states is unchanged by the random 
swapping of subparticles. Of course ordinary mechanical (colorblind) scattering 
may also occur at the node and may modify the momentum states, but this process 
is totally independent of the subparticle spin exchanges. Thus the colorblind 
scattering rules are the same as those mentioned in the previous section. The 
simplest way to randomize the spin is to allow each subparticle in the final state to 
reside, with equal probability, in any one of the reconstituted particles. 

With this choice of subparticle scattering rules, we can see that particle color 
indeed tends to be equipartitioned. For example, we consider a 2-body particle 
scattering, in which the two particles have color (T, and Q*, respectively. After a 
collision they change into a; and gi, respectively. The particle with color value o’, 
will contain a number of “lo” subparticles equal to A4r0 = M, + g; and a number 
of “&,” subparticles, IV? = M, - a;. Likewise, in the particle with color value a; 
there will be “gg subparticles numbering M$” = M, + a; and “&,” subparticles 
numbering A4 $’ = M, - 0;. The probability of this configuration, as a function of 
the chosen final color values a; and a;, is 

P(c() a;) = [(2M,)!12 
M’O!M&l 

Mp!Mp!Mfo!M$O!(4M,)!’ 

where the total number of “&,” and “go” subparticles at the node, which are con- 
served in the scattering, are MC0 s My + M$’ and M E0 z My + M$“, respectively. 
The total number of subparticles of either kind is unchanged. Color conservation, 
(T, + oZ = a; + a;, is explicitly satisfied in this interaction. It is easy to see that prob- 
ability P has a maximum value when M ‘fO=M$O=M’0/2 and M~=M~=M~O/0/2. 
As a result, the most likely outcome of these subparticle spin scattering rules is the 
formation of final color states that are just the average value of the pre-collision 
partile colors. This is equivalent to the color scattering scheme described in the last 
section. In particular, if (ri = 3 and oz = -1, suppose 2M, = 6, then there are six 
“5,“-subparticles and no “g,“-subparticles in the 0, particle, but there are two 
“&“-subparticles and four “[c-subparticles in the C-J~ particle. The new spin values 
0; and 0; for the two particles after the scattering will tend to have 0; = G; = 1, 
since both of the scattered particles are most likely to have four “t(y- and two 
“to”-particles. 

Color sources at the particle level can also be affected by simple procedures for 
manipulating the subparticle spins. If there is a color source at a particular node, 
it should influence particles in any state C, at that node. For any such particle, we 
modify the distribution of its subparticle constituents accordingly. Specifically, 
squbparticles carrying a spin to will have their spins changed to [, at a controlled 
rate, given by Z?. The rate of changing spins of value f0 into to spins is similarly 
defined as E”f”. The net number of subparticles is unchanged, so that & 52 3 0. The 
strength of the color source is clearly associated with the magnitude of the rate of 
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conversion of one type of subparticle spin into the other. Thus, the particle color 
(a) source in Eq. (7) is related to the subparticle spin (r) source by C, aEz = 
& @f. 

We have now complete the reformulation of the multicolor CA with color sour- 
ces and color scattering in terms of an equivalent subparticle spin representation, 
with spin collisions and spin sources. The task of the present section is completed 
by describing a few properties of the subparticle equation of motion, which may be 
written as 

Mt(x + z,, r + 1) = M;(x, t) + AZ + $, (11) 

where Ai represents the change of the “5” subparticle number in state d, by 
collisions of both mechanical and spin-mixing varieties. With the above choice of 
scattering rules, we have C, Ai = 0, which is the result of the conservation of 
the number of subparticles with each value of spin. As a consequence of the 
conservation of the total momentum we also have Cc,. C,dt=O. The total 
momentum of subparticles with each spin value is not conserved since momentum 
may be transferred between subparticles with different spin. Summing over 5 in 
Eq. (1 l), Eq. (2) is recovered. Since the colorblind or “spin-blind” scattering rules 
are the same as the particle scattering rules in the hydro-CA, the collision rates 
satisfy Es Ai = 2M,A,. Using the property that C, ON: = C: Y$M~ and C,, oZ; = 
Cc rq, we can show that Eq. (11) is equivalent to Eq. (7) since Eq. (8) is 
recovered by multiplying both sides of (11) with <, summing over a and 5, and 
averaging. Equation (11) has similar form as Eq. (7). They describe the same 
multicolor CA system in two different representations. The new spin-subparticle 
representation is, in some ways, more complicated than the original multicolor 
particle representation. In particular, computational implementations of the model 
would almost certainly find the multicolor particle representation more 
advantageous. However, analytical manipulations are facilitated by the use of 
Eq. (11) in ths subparticle representation. Most importantly, when the color value 
range is large the subparticle collision term A: has a much simpler form compared 
to A: in the particle representation, In the next section, using the subparticle 
representation, we will analytically show that the averaged color field distribution, 
A, obeys the Poisson equation. 

4. STEADY STATE COLOR FIELD DISTRIBUTION: 
THE POISSON EQUATION 

We proceed by summing Eq. (11) over the momentum state index a and then 
forming the macroscopic average of each surviving term. This gives the relation 

(12) 
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where the collision term has vanished after the summation over a, C, d: = 0, due 
to the fact that the number of subparticles of each spin value is conserved by scat- 
tering. If the spin (or, color) sources are ignored, it can be shown [7] that a CA 
system described by an equation such as (12) models a passive-scalar equation, 

at + I’. [v(nA)] = DV2(nA), (13) 

where A is the averaged spin distribution defined as 

which, by the relationships described in the preceding section, is equivalent to the 
macroscopic color distibution. The quantity v is the averaged flow velocity of the 
CA particles, which is determined from 

and which obeys the hydro-CA equations [2,3]. The parameter D (>O) is the 
color diffusivity. Equation (13) shows that the evolution of the color field is due 
either to the convection of the fluid flow or to the diffusion process, as is the case 
for a passive tracer in a real fluid. We shall assume that boundary conditions and 
initial data are such that the velocity will decay to zero due to viscous stresses. 
Thus, v = 0 and n = const, if either (a) there is no external forcing and time t -+ cc 
or (b) n = 6 (the maximum possible particle occupation number at each node of a 
triangular lattice) everywhere. In these limits Eq. (13) reduces to a simple diffusion 
equation for A, as expected. Due to the streaming and scattering, the color will dif- 
fuse throughout the CA lattice. The color field A, therefore, should decay towards 
a trivial steady state A = 0 everywhere, if the lattice is infinite large. However, if this 
system involves a distribution of macroscopically time-independent color sources, 
including possibly sources necessary to maintain the specified boundary conditions, 
the color field is expected to have a distinct, nontrivial steady state spatial 
dependence. 

In a steady state with sources, Eq. (12) becomes 

in which all macroscopic quantities are independent of the time. If (M:) varies 
slowly in space, with the length scale characteristic of its variation, L, being much 
longer than c ( = lt?,l), we may Taylor-expand the above steady state equation, and 
arrive at 

581/88/Z-13 
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where E N c/L is the small expansion parameter. 
At this point it is convenient to further factorize the local ensemble averaged 

distribution function. Making use of the relation Cc (Mi) = 2M,( N,) from the 
previous section, we may write, without loss of generality, 

we) = 2MclCK.r(N,) +x:1, (16) 

where 

C?c~=l and c x:=0. (17) 

Moreover, it is possible to assume that ~2 has an additional property, namely, 
C, 2: = 0 [7 3 without loss of generality. Indeed, if C, xf # 0, we simply define 
I? s rcs + C,( x:,/n and ff z xf - (C,. ~$)(N,)/tq and rewrite 

which then satisfies all the desired properties. The relevance of the decomposition 
represented by Eq. (16) can be seen by noticing that 

I$ = (M’)/(2M,n), 

where (M <) s C, (Mz ) is the averaged total number of subparticles with spin 5 
at a node (or, up to a scale factor, the density of such subparticles). Thus K~ 

represents the fraction of the subparticles at a node that have spin 5. Moreover u5 
is the only part of the distribution (Mz) that is associated with the local value of 
the macroscopic color, since, from the definition nA = Cr, a 5( Mz), we have 

2M, 1 @cc = A. (18) 

The remaining ingredient of (Mt), defined above as IS;, represents the anisotropic 
deviation of the color distribution among the states C;,, a = 1, . . . . 6. This part of the 
color distribution will play an important role in the following development. In 
addition to above expressions, it is useful to introduce the averaged flow velocity 
of the subparticles with spin [, which we express as 

From Eq. (16) we immediately see that 

v~=v+d, (19) 
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where 

is the ordinary colorblind hydro-CA flow velocity. Thus the subparticles with spin 
5 drift relative to the local center of mass particle flow with a velocity uc that is 
given as 

The last several relations among the particle and subparticle velocities are valid for 
arbitrary kinds of flows, but in the present case of interest, we are assuming that 
the colorblind particle distribution has reached complete equilibrium, so that v = 0 
everywhere. This leads to a colorblind particle distribution (N,) = n/6 (a = 1, . . . . 6) 
[2, 31. From the relation (17), we have C, (M5)u5 = 0. Thus the relative velocities 
of the subparticles with different spins do not contribute to any net transport of 
mass. Rather, the relative velocities are related to the process of diffusion of popula- 
tions of subparticles with different spins into each other, (while the populations 
move collectively with the average velocity v). It should be noticed that the color 
diffusion process is active even if the colorblind particle distribution is everywhere 
uniform, (N,) = n/6, provided that the color distribution is nonuniform. 

Further consequences for the steady color distribution are obtained from Eq. (15) 
by considering the special case of interest. Specifically, the particle distribution is in 
a uniform isotropic equilibrium, but the color distribution, being influenced by 
sources, is slowly varying but not spatially uniform. The existence of a nonzero xf 
indicates, as shown above, that the local fluxes of subparticle spins are not 
isotropic, even though the color scattering and the color sources may be chosen to 
be isotropic. In fact, in the last section we adopted scattering rules that guarantee 
that the local color is isotropically distributed among the states P, (a = 1, . . . . 6) 
immediately after every color collision. In addition, the color sources are easily made 
to be isotropic by the choice (Zz) = C, (Sg)/6 E (E5)/6. That is, whenever color 
is added at a source point, it is added so that on average it is independent of the 
momentum state of the particles. Consequently, any anisotropy in the subparticle 
spin distribution, represented by ~2, must be due to anisotropy of the streaming of 
different subparticle types. Therefore we can assume that at time t, just after colli- 
sions and sources have acted, the distribution (Mt ) is isotropic, i.e., (Mi) = 
( M5)/6. At time t + 1, after streaming, the new (M$ ) will, in general, no longer 
be isotropic, but will satisfy the Taylor-expanded relation 

(ME;(x, t+ 1))=;(M5(x-go, t))+@S) 

=~[~-E~;V+~E~~~@~:VV](M~(X,~)) 

+ gs> + O(E3). (20) 
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Using expression (16), and the property 

c Cat?, = 3~~1, 
0 

where I is the identity matrix, we immediately get 

and 

X:=-2M, (1 -f- c .V(MC) + O(2), 

so that we may write the anisotropic component of the color flux as 

xi = Elfq + O(E3) (21) 

where $i= -tjf+,. Equation (10) shows that the same scale separation condition 
that permitted the expansion in Eq. (15), namely that (M5) varies slowly with 
position x, allows us to deduce that ~2 z -xf + 3, that is, xi is an odd function with 
respect to the direction C,. 

Multiplying < both sides of Eq. (15), summing over all the spin index 5, and 
using the expressions in (16)-(21) we obtain 

2M&V. 1 e&2 + ; c2nV2A =j+ O(E~), 
5. u 

(22) 

where j = C,, c1 t(Zf) is the rate of increase (decrease) of the total color at position 
x due to color sources. 

As seen in the above equation, the magnitude of j should be of order s2 to be 
consistent with the magnitude of the terms on the left hand side, otherwise the 
spatial variation of A may be too large to permit the Taylor expansion. It is easy 
to see that 2M, &, a 6,&&z is the total color flux density at a given position. It is 
entirely due to the process of relative motion, or diffusion, of subparticle spins, at 
relative velocity us and not due to mass convection. This process can be further 
understood by the following example: Suppose there are two regions that have the 
same total particle densities, but in region (I) the subparticle spin densities satisfy 
the inequality (MC”) > (MC”), whereas in region (II) the spin densities satisfy 
(M’O) < (MfoO). If all the subparticles are assumed to random walk under the 
influence of mechanical scattering, there will be a net mass flux of &, subparticles 
towards region (II) and an average an exactly opposite mass flux of 5, subparticles 
towards region (I). Since the spatial variation of the color field is caused by the 
difference in the number subparticles with different spins in the two regions, and the 
above relative flow process tends reduce this color field variation, the macroscopic 
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color flux should be always opposed to and proportional to -VA. This non- 
convective effect is essentially analogous of Fick’s law for heat conduction. 

Using this heuristic argument write the color flux as 

2A4, C &,&b~ = --n DVA, (23) 

where the parameter D is the diffusion coefftcient is assumed to be a function only 
of the colorblind particle density n. The functional form of (23) and the assumption 
that D = D(n) will be rigorously addressed in the next section and in the Appendix. 
Substituting above the form of the color flux into Eq. (22) and dividing both sides 
by c2 gives the Poisson equation with corrections being of order s* smaller. Speciti- 
tally, 

V*A = .I + O(c2), (24) 

where JE -j/[(D - c2/4)n]. Equation (24) is valid whenever the required conser- 
vation laws, symmetries, and spatial scale separation between the microscopic and 
macroscopic worlds are satisfied. No detailed information about the collision term 
d: (or LIZ) is needed, other than the general symmetry properties that have aleady 
been discussed. However, the value of the functional form of the diffusivity D(n) 
will depend in detail on the design of the collision rules. 

5. PROPERTIES OF THE DIFFUSIVITY 

There are several issues relating to the color flux and the diffusivity that must be 
established to justify the conclusion, expressed by Eq. (24), that the CA model we 
have described provides solutions to the Poisson equation. First, the heuristic argu- 
ment given to justify the functional form of the color flux given in Eq. (23) must be 
proven. Second, it will be necessary to demonstrate that the diffisuvity D is a func- 
tion only of the colorblind particle density. The conditions for the validity of these 
two statements also need to be clearly given, as these will provide restrictions on 
the validity of the model. Rigorous treatments of these two critical issues are given 
in this section. The closely related issue of computing approximate analytical 
expressions for the diffusivity is deferred to the Appendix. 

It is important to notice at this point that the deduction of properties of the 
averaged, macroscopic color field properties given in the previous section depended 
only on considerations of the averaged microscopic equation of motion in which 
the momentum states are summed over, i.e., the form given by Eq. (12). The colli- 
sion term is absent in this form due to the conservation of subparticles of each type 
within a node during collisions. The remainder of the developments in Section 4 did 
not rely at all on the specific form of the color distribution; we needed only to 
assume that the scale separation was adequate to allow the Taylor expansions in 
space and that the colorblind particles were in a zero flow velocity, isotropic equi- 

58l,‘W2-14 
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librium. However, it is clear that a determination of the critical term on the 
left-hand side of Eq. (23) requires more information about the color distribution 
functional form. The macroscopic color flux, 2M, &, a Z,&i can be computed only 
when we know ll/i, the anisotropic part of the color distrubution. We show here 
that $2 can be computed from the isotropic part of the color distribution K: and 
the particle density n, under the same conditions assumed in the previous sections. 
To do so, however, we must consider in greater detail the effect of the structure of 
the collisions on the color distribution. 

To examine the effects of the collisions on (Mz), the distribution of color and 
momentum, we return to Eq. (11) and form its ensemble average, which may be 
written as 

w% + PC,, t+l))=(M~(x,t))+~~+(Z~), (25) 

where G?g = (A:) is referred to as the collision integral. To get an explicit expres- 
sion for the diffusivity D, Eq. (25) has to be solved in some approximation. This 
requires writing a explicit form for the collision integral sZ$, which is given in the 
Appendix. The properties of 52: that are needed for the present purposes can be 
arrived at by more general, but nonetheless rigorous, reasoning. 

The collisions adopted for the model have the following properties, which were 
mentioned in Sections 2 and 3. Mechanical collisions have effects only on colorblind 
particles and occur in the same way as in a hydrodynamic CA with no color 
degrees of freedom. Mechanical collisions conserve the total particle number and 
the total particle momentum in each node. The collisional interaction between 
subparticle spins, representing color smoothing effects, conserve the total number of 
subparticles with each value of spin < at each node. (Two such values were 
assumed.) The spin collisions are also chosen in such a way that they tend to 
isotropize the distribution of color over the momentum states g,. With these rules, 
there is no spin related force on the particles, which is simply a reflection of the fact 
that color is completely passive from the point of view of mechanical motions of the 
CA particles. 

These properties of the collisions place several constraints on the functional form 
of the collision integral. In order that the collision integral produces the effect of 
colorblind mechanical collisions on particles it must reduce, upon summing over 
the spin index 5, to the form 

f-26) 

where Sz, is the collision integral in the hydro-CA [Z, 3, 111. The factor of 2M0 is 
due to the fact that each particle comprises that multiplicity of subparticles. This 
form also guarantees that sZ$ will conserve both particle number and total momen- 
tum, since 0, is constructed in accordance with those constraints. Another impor- 
tant property of L22 is that it is a linear function of the subparticle spins at each 
node. 525 is the collisional change in the population of subparticles in momentum 
state P, with a particular spin 5. Since the total number of subparticles with spin 
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5 is conserved due to all collisions, each subparticle that contributes of Qi was resi- 
dent, prior to the collisions, at the same node in one of the six allowed momentum 
states. The spin collision operator simply rearranges spins that were already there. 
The manner in which this rearrangement of subparticle spins in a node occurs is 
constructed to be independent of the values of the spins that happen to be present 
at any time. The rearrangements are also, therefore independent of the macroscopic 
color. Specifically, the spin collisions assign a probability that a subparticle in any 
particular state C, will be moved to a postcollision state d,,, the probability being 
independent of the color. Consequently G’g must be expressible as a linear combina- 
tion of the precollision populations, in the form 

where W,, ui is a (6 x 6) matrix that is independent of color, but is expected to 
depend on colorblind quantities such as the particle density. The linear form (27) 
holds separately for each value of r, guaranteeing that spin collisions only rearrange 
existing spins rather than converting one type to another. The matrix W is not of 
arbitrary form, since the linear mapping it represents must be invariant with respect 
to discrete rotations of the full set of subparticles at the node. This is ensured by 
the requirement that W is a circulant matrix [3, 121. We refer W,, a, as the trans- 
ition rate (or probability) of subparticles from state C,. to 6, due to scattering. 

It should be emphasized that, in contrast to analogous relationships that occur 
in the calculation of the hydro-CA viscosity [2, 31, the linear relationship (27) does 
not rely on the assumption that the color distribution is near equilibrium. However, 
we do assume that the colorblind particle distribution f, is in equilibrium, which 
is established independent of the color distribution because the color is mechani- 
cally passive. 

By substituting the decomposition of the distribution given in Eq. (16) into (27), 
we find that 

.Qt = 2M,lc’Q, + 2M, 1 W,, u, xi,. 

The first term on the right-hand side of the above equation vanishes when the 
colorblind distribution is in equilibrium, since that equilibrium is determined by the 
condition Q, =O. If the color field were in local equilibrium, the condition Qz=O 
would be satisfied, and one would conclude that the local color is equally dis- 
tributed among the particles in different d, states, so that (Mi) = 2M,u4f,. 
However, in general, the existence of a color flux, implies by nonvanishing xz, 
prevents such a color equilibrium from being established. 

Using the above results and Taylor expanding equation (25), we obtain 

2M,,x Wu,u.~:.=~ V.&,+%V:e,t?, 
2 Oft> 

0’ 
- (ZZ> + O(e3). (28) 
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Expression (28) consists of six linear algebraic equations for the quantities xi 
(a = 1, . ..) 6), if the right-hand side can be approximated by known quantities. Once 
we invert the matrix W,,., the analytical solution for xi is obtained from the above 
six equations. The color source on the right-hand side of (28) may be taken to be 
a known isotropic source (Zi) = (C, (et))/6. The remaining needed approxima- 
tion is obtained from Eq. (16) and the subsequent discussion concerning scale 
separation, namely that the color distribution is approximated by 

where II/i = x:/s and the colorblind particle distribution is f, = (N,). We insert the 
lowest order terms of this expansion of (Mt) into the right-hand side of Eq. (28) 
and keep terms up to the same order as on the left-hand side. We also assume that 
the colorblind particle distribution has reached a zero fluid velocity equilibrium, so 
that v = 0 and f, = n/6. 

We are now in a position to formally solve Eqs. (28) to obtain ~5 ( z:E$~), even 
though specific values for the matrix W have not been assigned. The result is that 
the formal solution of Eq. (28) must take the form 

$2 = -Ki, .Vnu’ + O(E*), 

where the positive parameter K is a function of density n only. Taking this result 
back to the expression in the first term of Eq. (22) in the previous section, gives 

2M, c i!,(G+b~= -3c*KnVA, (29) 
;, cl 

where the density is assumed to be spatially uniform. Thus we have proven that this 
term is indeed proportional to -VA as we had suggested on heuristic grounds in 
the previous section. The diffusivity D (= 3c*K/n) is only a function of the color- 
blind particle density n and its value is unchanged by changing the number of 0 
values (or the maximum co). This explains why the diffusivities calculated in several 
previous studies take on similar general forms [7, 131. In the Appendix the inver- 
sion of Eq. (28) is carried out explicitly using the transition rate matrix W,, <II 
corresponding to the exact collision integral. 

6. RELAXATION TIMES, BOUNDARIES, AND SOURCES 

Once the value of the diffusivity is known, either from the analytical expressions 
given in the Appendix or from numerical results, we can estimate the time for the 
multicolor CA to relax to the steady state. Assuming that the flow velocity is zero, 
before reaching the steady state, the color field A obeys the diffusion equation with 
source function j/n, 
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From the form of this equation we may estimate the relaxation time t to be about 

where L is the characteristic macroscopic length over which the color field under- 
goes substantial variations. L can be no greater than the CA system size. In the 
natural microscopic CA units, in which the cell separation is unity and c = 1, the 
upper bound for L is the total number of cells in any one spatial direction. For 
diffusivities of order unity, a rule of thumb is that the CA relaxes in a number of 
time iterations about equal to the number of nodes on the lattice, although the 
relaxation time also depends on density through D(n). Starting from arbitrary 
initial conditions, it will take several relaxation times for the system to settle down 
to the steady state, in which the averaged color distribution converges to the 
solution of the Poisson equation. 

The above expression for r, suggests at least two ways to reduce the number of 
CA iterations needed to compute a solution to the Poisson equation. First, before 
getting to the steady state, we can increase the particle speed c (equivalent to reduc- 
ing number of lattice nodes), so that the color information carried by particles is 
propagated more rapidly on the grid, and information from various sources and 
boundaries more quickly produces a color equilibrium. Second, the relaxation time 
is smaller when the diffusivity is greater. From the explicit expressions for D(n) in 
the Appendix one can easily see that D is smaller when the density n is higher. This 
is because at higher density there are more possible color collisions. Therefore we 
can increase the value of the diffusivity either by adjusting the density to lower 
values, or by artificially turning off the color collisions while keeping particle den- 
sity fixed. Practical applications of the method might eventually make use of these 
types of temporary adjustments to the CA parameters to accelerate relaxation. 
However, an accurate determination of the final steady state requires use of unit 
particle speed c and maximal color collision rate. In fact there are several closely 
related reasons that the spatial accuracy of the computed solution is improved 
when the particle speed is unity and the collision mean free path is minimal. First 
the formal parameter controlling the error is E which is proportional to the distance 
c that a particle moves in one CA iteration. Second, the color anisotropy at each 
node is controlled by the collisions. Finally, for fixed level of time averaging, the 
computed color distribution may still contain errors over scales of the order of the 
mean free path for color collisions. All three of these effects indicate that the best 
spatial accuracy is obtained for minimal D(n), which may be estimated most simply 
as D z (particle speed) x (mean free path for color collisions). A final point pertain- 
ing to relaxation rates and accuracy is that the system ought to be started as closely 
as possible to a condition in which n is uniform and isotropically distributed among 
the six momentum states in each node. In this way the initial state will satisfy v = 0 
and n = const everywhere and will stay this way [2, 3, 71, so that the rate of relaxa- 
tion to the quiescent flow state does not become an issue. 
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There are typically two kinds of boundary conditions that are relevant to the 
Poisson equation. The first kind is the Dirichlet condition, in which the color field 
is specified on the boundary, i.e., 

where x0 is on the boundary. Second, there is the Neumann boundary condition, 
in which the value of the normal derivative of the color field is specified on the 
boundary, i.e., 

A third interesting type of boundary condition is the mixed type, in which at each 
boundary point a linear combination of A and its normal derivative is specified. 

In order to formulate the two basic boundary conditions within the multicolor 
CA framework. let us first consider the two special cases @ = 0 and Y =O. Ideas 
from the method of image charges in electrostatics [14] are useful in this formula- 
tion. For the boundary condition @ = 0, corresponding to each particle having a 
given color value inside the boundary, there is an imaginary particle outside the 
boundary with the same absolute magnitude color value but with opposite sign. 
The position and velocity of the image particle are just the mirror reflection, with 
respect to the boundary, of the particle inside. Thus, when a particle carrying a 
certain color value reaches a position on the boundary, its image particle carrying 
an opposite color value reaches the same position at exactly the same time. The 
color value at the boundary is thereby kept precisely at the value zero, since at the 
instant that both particle and image particle are present on the boundary, their 
colors exactly add to zero. At next time step, the particle originally inside is 
considered to have left the system, while its corresponding image particle enters the 
system. The image particle is now considered to be a “real” particle and has, with 
respect to the boundary, a tangential velocity component equal to the original 
particle and a parallel velocity component opposite to that of the original particle. 
The total number of particles in the system is kept exactly constant by this kind of 
boundary condition. 

For the boundary condition of the second kind, Y = 0, we assume instead that 
each image particle has the same color value as its counterpart within the CA 
system. The set of image particles produce a color distribution outside the system 
that is a mirror reflection about the boundary of the color distribution of particles 
inside the boundary, so that the color distribution is an even function with respect 
to the boundary point (line). Therefore the particle distrubution within the bound- 
ary, producing a certain normal component of the color gradient is always 
mimicked by an image particle distribution outside with a normal component of 
color gradient that is equal in magnitude but opposite in sign. Consequently, the 
net color gradient normal to the boundary at the boundary is kept exactly zero. In 
real computations, of course, the image particles are not explicitly accounted for. 
When a particle having a certain color value reaches the boundary, its normal 
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velocity respect to the boundary reverses but its tangential velocity is unchanged. 
The sign of the particle’s color value is simply changed (unchanged) for the first 
(second) kind of boundary condition. In effect this defines a mechanical collision 
rule and a color source on the boundary that maintains the prescribed boundary 
condition. 

The method described above can also be extended to the case of more general 
boundary conditions with nonzero @ or (I/. For the general Dirichlet condition @ 
is specified on the boundary. If at some time there are N particles that reach the 
boundary, we let the color value (T of each of these particles change to -0 + Q/N, 
whenever it is possible. It is easy to see that the total spin value on the boundary 
is fixed and equal to @, on average. For Neumann boundary conditions with non- 
zero ul, the CA boundary rule is similar. If at some time N particles reach the 
boundary, we let each of their color values, say g, change into G’ = cr + 2cY/N to 
the extent to which this is possible. This indicates that at the previous step, prior 
to streaming, the value of the color one lattice distance c outside the boundary (in 
the image particle region) was 2cY higher than the interior particle color had been 
one lattice distance inside the boundary. Consequently, this leads to a normal 
derivative of the color at the boundary with a value ul, in the sense of second-order 
finite differences. 

It should be mentioned that there are other possible ways to implement the 
boundary conditions. For example, Dirichlet conditions can be achieved by main- 
taining the total color value on the boundary line at the value @. For Neumann 
conditions, we may keep track of two boundary lines, instead of one. The total 
color value at the outer boundary changes according to the inner one, in order to 
fix the normal derivative. If the total color value at the inner boundary line at a 
certain time is C g, the total color value at the outer boundary is just changed to 
~CT+dJ. 

Finally we consider the implementation of the sources. Recall the expression for 
the subparticle spin sources, as given following Eq. (22) j = C,, u t( Z:), where 
(Ef) is the time rate of change (or probability per time) of the subparticle popula- 
tion in the spin state 5 and momentum state a, where the momentum state is 
unchanged by the source. For isotropic sources we have (Zt > = C, (Zi)/6 f 
(3’)/6. Using the subparticle conservation rules discussed before we have 
(Z$) = -(Zp), where to = -to-o= 4. Thus the source changes some number (say, 
16 a,) of subparticles from states with label lo into states with label tO. Viewed at 
the particle level, the particle in state I?, which is made up of these subparticles has 
its color value changed from g to c + 1. Therefore, j is the averaged total color 
increase per time at a certain position. In computations the source j is implemented 
by adjusting values of Q, since the subparticles and t-values have been used here 
primarily for convenience in analytical manipulations. In order to have a CA that 
simulates the Poisson equation, we need to have j to be statistically independent of 
time, and, more importantly, independent of the color field A. The source will 
unavoidably be a function of A if the spin value range (as measured by go) is small. 
We shall demonstrate this here. 
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Suppose the color (T only has three possible values, (- 1, 0, l), i.e., go = 1. 
Further, at some position suppose that A is close to 1 so that almost all particles 
at that position have color CJ = 1. If a positive source is present at that position, it 
will attempt to raise the color to still higher values, but will be unable to do so 
because there are not enough low color-valued (0 = -1,0) particles around for it 
to act upon. Expressing this in terms of the subparticle picture, we may consider the 
value of E”5 to be composed as Z:“5 = (the probability for increasing a subparticle’s 
spin label to the value [, controlled externally) x P5 (the probability of finding at 
least one subparticle that is not in the state 4 at this position). The second term 
causes the color (spin) source to be dependent upon the color field A. If the range 
of c values for each particle is low (e.g., u E { - 1, 0, 1 },), changing a c = 0 particle 
to a (T = 1 particle each time corresponds to a large color source pulse. In order to 
have a smaller effective source so that A is prevented from becoming too large 
( x l), the source has to be operated infrequently. This generates an additional 
problem, that the macroscopic statistical averages that characterize the CA (and 
form the solutions to the Poisson equation) cannot be extracted unless the 
averaging time is very long. If, however, the range of 0 is high (0 E { -co, . . . . - 1, 
0, 1, . . . . co}) by having (TV % 1, then a source changes a spin value from CJ ---f 0 + 1 
is effectively considered to be weak. A more accurate correspondence of macro- 
scopic sources to microscopic color sources is attainable with larger go, while the 
correspondence of A to physically relevant quantities is maintained by a simple 
linear resealing of A in terms of oO. The model will work best with these kinds of 
sources that are “weak” in the sense that they can operate frequently without 
producing saturation of color, i.e., IAl remains 4 oO. For large color range, we can 
show that the probability that a particle at a given position can accept a unit of 
color (i.e., there is at least one 5 subparticle present) is approximately 

where F' E (crO - IAj)/(20,), and r = i, - i. Therefore, we see that by having a large 
crO, the probability P5 is generally very close to unity except when A is extremely 
near (TV. Therefore with suitably large o0 the sources are essentially independent of 
A. This is the most important reason to use a large number of possible color values 
in the multicolor CA system for solving the Poisson equation. 

7. NUMERICAL IMPLEMENTATION AND EXAMPLES 

In the previous sections we have presented a complete description and theoretical 
justification of a CA model for determination of solutions of the Poisson equation. 
However, confidence in both the effectiveness and the accuracy of the method will 
ultimately depend on obtaining satisfactory results in numerical experiments. In this 
section we describe the structure of a code that implements the model in a simple 
geometry. Results from two simple test cases are also presented. 

Our code is based on an implementation of a two dimensional hydrodynamic CA 



CELLULAR AUTOMATON POISSON SOLVER 457 

[ 1, 2, 3) model on the usual triangular grid with hexagonal symmetry, having six 
allowed momentum states per node. The code is written to allow several types of 
boundary conditions, including free-slip and no-slip, but the present examples will 
use periodic boundary conditions in both the horizontal (x) and vertical (y) direc- 
tions. Fermi exclusion rules are enforced on the mechanical particles, so that at 
most one particle may be in any momentum state at a particular node at a given 
time. Two body, three body, and higher order composite mechanical collisions are 
allowed at each time level. All collisions conserve both particle number and 
microscopic momentum in each cell at every time level. Particles have unit mass 
and speed. The data structure for representing the mechanical CA particles is 
arranged so that the fastest running index labels node position in the x direction, 
the next fastest index represents y position, and the third fastest running index 
indicates the six allowed momentum states C,. The final level of indexing labels odd 
and even time levels. The main operations within a time loop are scattering and 
streaming, in that order. Averaging to obtain macroscopic quantities is performed 
after the scattering step. 

The hydro-CA is extended by including six integer color variables for each node, 
to represent the color value of each particle that may reside in each momentum 
state. Color is transported over the grid by establishing a one to one corre- 
spondence between the motion of mechanical particles and the movement of the 
integer color values on the grid. Each color value moves with its associated particle, 
but in no way influences the particle motion. Prior to the application of the 
mechanical scattering algorithm at each time level, a color injection routine is called 
to model the sources. A fixed amount of color (which may vary on different sourced 
points) is added to the first particle found in any node at which there is a source. 
Immediately after the source routine, a color scattering operator is invoked that 
averages the color at every node, including source nodes, over all particles present 
at that position. Since the color is an integer, this process sometimes leaves a color 
remainder, which is placed a unit at a time into the particles present in an isotropic 
pseudo-random fashion. Finally, the averaging routine is modified to compute time 
averages of nA at each node. These time averages give the macroscopic color field 
A, which is expected to be the solution of the Poisson equation. 

We initialize the grid with a uniform density of particles and randomize their 
momenta over the six allowed momentum states. Experience has shown that the 
straightforward use of a random number generator is not adequate for this purpose, 
since a sufficiently isotropic particle distribution is usually not obtained. This 
produces a nonzero mean flow speed, which is conserved over time in periodic 
boundary conditions. This gives an additional steady advective term in the color 
transport equation and small but measurable systematic deviations from a Poisson 
solution. To cure this problem we take greater care in preparing the initial particle 
data. Particles are placed into randomly selected states in locally clustered groups 
of nodes, keeping track of the mean density. By controlling the anisotropy, the 
mean flow speed is made extremely small. This only needs to be done when 
initializing the run, and represents only a small overhead in computation time. 
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For verification and preliminary testing, the algorithm was first developed on a 
VAX 111750 and run on VAX 111785 and 8600 computers. The VAX version uses 
32-bit integers for particle state data, with consecutive bits representing particles 
with a local range of x values, but with equal y positions and P, values. Color is 
represented by a 16-bit integer, which defines the allowed range of color values 
(a0 = 215). Thus, both particle streaming and particle collisions are afforded a sort 
of 32-fold parallelism on the scalar single processor VAX machines. The code 
involves almost exclusively integer and Boolean operations. Color averages are 
accumulated in a 32-bit integer array so that real arithmetic is needed only for 
postprocessing to extract a floating point value for A(x). A CYBER 205 version of 
the code is also currently being developed. On the CYBER, bit vectors are used for 
particle states, and the code is greatly simplified and highly vectorized. Since the 
algorithm is almost totally parallel in nature, it is expected that implementations on 
machines, such as the massively parallel processor at Goddard Space Flight Center, 
will be relatively easy to achieve and highly efficient. 

For the purpose of illustration we present here the results of two sample calcula- 
tions. The first is a pair of oppositely signed parallel line charges (a two-dimen- 
sional dipole) separated in the x direction by approximately half the width of the 
periodic box. The second is a pair of oppositely charged sheets separated by the 
same extent in x as the first case. These problems admit closed form solutions (in 
the second case through a series representation or via images). These problems 
allow us to not only compare features of the numerical results with the exact 
solutions, but also permit an evaluation of quantities such as the diffusivity. 

Figure la shows a contour plot of the potential A from the CA dipole calculation 
after 25,000 time steps. The contours were computed from color averages taken 
over all 25,000 steps, with spatial averaging over nearest neighbors. The CA was 
run on a 64 by 64 grid and its solution converged within ten thousand time steps. 
The average particle density was x 2.0, which is close to the optimum for producing 
frequent mechanical collisions. Color collisions were imposed at all nodes at every 
time step. In view of the discussions at the beginning of the previous section, these 
selections were made to maximize the effective spatial resolution. Note that the 
theoretical relaxation time, z, is approximately L’/(I) - $). For this run, D 2 0.5 
(see below) and T x 16,000 time steps. Figure lb illustrates contours of the analytic 
solution to this problem, obtained by summing the effect of 90 image charges in 
surrounding periodic cells. It is evident that the analytic and CA solutions are 
qualitatively very similar. 

The results of the second test problem are shown in Fig. 2, the top panel of which 
illustrates the y-direction averaged potential as a function of x, where the 
oppositely charged sheets were positioned approximately one-quarter and three- 
quarters of the way across the simulation domain. Time averaging was over 5000 
CA iterations. In this case the analytic solution for the potential per unit charge, g, 
is g(x)=(l-41x-$1)/8 for x<$ and g(x)=(-1+4(x-:1)/8 for x>,$, where 
the box size is taken to be unity. The bottom panel of Fig. 2 shows the magnitude 
of the difference between the analytic solution (fit to the maxima of the CA solu- 
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FIG. 1. (a) Equipotential contours for the CA solution to the two-dimensional dipole problem 
described in the text, obtained by averaging over 25,000 time steps, and spatially averaging over nearest 
neighbor nodes. (b) The exact solution to the same problem, obtained by summing the contributions to 
the potential from 90 image dipoles. 

10 20 30 40 50 60 
X 

FIG. 2. (Top) CA solution for the periodic array of sheet charges, as described in the text. The solu- 
tion is normalized to the maximum potential value. (Bottom) The absolute value of the difference 
between the computed CA solution and the Iit analytical solution, as a function of position. 
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FIG. 3. The diffusivity D(n), as a function of density n, obtained by a sequence of CA sheet charge 
runs at varying density. The crosses represent the low density theoretical diffusion coefficient calculated 
in the Appendix. 

tion) and the CA result. For all values of X, the errors are on the order of 10m3. 
This error is of the same magnitude as the fractional departure from isotropy of the 
initial particle distribution. 

It is easy to show that the magnitude of the slope of the CA solution in any of 
the straight segments, say S, is related to the CA diffusivity by D = a + Ij/(ZnS)I. 
(The contribution of $ is due to the “grid diffusivity”). Therefore one can easily use 
the results of this simulation to “experimentally” determine the collisional color dif- 
fusivity D(n). Here we find that D(n = 3.5) z 0.35. Runs at lower density give higher 
values of diffusivity, as expected from theory. A sequence of test problems of this 
type were performed at varying densities to compute experimentally the functional 
dependence of D(n). The results of this procedure are shown in Fig. 3. As n 
approaches the maximum density 6, D = 0.3, while the diffusivity takes on very 
large values at low densities. Figure 3 also includes several of D computed from the 
low density Chapman-Enskog expression in the appendix. The theoretical and 
experimental values are similar in their qualitative behavior, but disagree quan- 
titatively. 

8. DISCUSSION 

In this paper, we have constructed a multicolor CA system and given a complete 
analytical demonstration that it is expected to provide solutions to the Poisson 
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equation under certain circumstances. In this CA system, particles are considered as 
identical Fermi particles located on a 2D triangular lattice. Each of these particles 
carry an integer color value. By imposing suitable streaming and scattering rules 
that obey necessary symmetries and convervation laws, we have shown that the 
averaged color distribution is the solution of the Poisson equation in steady state. 
It is important to recall that our central results pertain to the lowest order terms 
in a Chapman-Enskog-like asymptotic expansion. In view of the difficulty in 
establishing convergence of this procedure, we rely on numerical experiments for 
verification. 

The numerical examples we have presented give confidence that the theoretically 
derived model provides reasonable solutions for the simple cases considered. 
However, considerably more demanding and more detailed numerical tests need to 
be performed before one might judge the CA model to be an effective an accurate 
alternative to solving real potential problems. Nevertheless the cases presented are 
encouraging. 

There were some interesting practical difficulties that were encountered in the 
first attempts to use the CA model. Most problems we have seen can be traced to 
two imperfections in computational realizations of the model. The first is finite CA 
system size, analogous to discretization error in standard methods, which results in 
imperfect separation of microscopic and macroscopic length scales. The second is 
the inexact correspondence between the ensemble average operation invoked in the 
theory and the space-time averages used in the computations. 

One specific problem, which was discussed in the previous section, is that the 
system is quite sensitive to a mean flow velocity, especially in cases such as those 
with periodic boundaries, wherein the mean flow does not decay (while fluctuations 
in the flow do decay). As we mentioned previously, a more careful “quiet start” 
algorithm for producing isotropically distributed initial CA particle population 
effectively eliminates this problem. 

A second practical difficulty pertains to the ability to control the effective 
strength of the sources. In the simplest form of the algorithm, the rate of adding 
color value to the particles is set to a constant and left unattended to color passing 
particles at the source positions. The complication is that microscopic density fluc- 
tuations persist even when the macroscopic fluctuations have decayed and the flow 
speed is zero. If a fixed amount of color is added to every particle that passes a 
source point, the effective strength of the source fluctuations along with the local 
microscopic density. This effect cannot be removed by time averaging. In fact for 
the examples considered, the volume averaged color (which always should be zero 
in these cases) drifts away from zero, in an apparently unbounded manner, with 
this simple coloring scheme. To eliminate this effect, which spoils the corre- 
spondence of the CA source strength to the physical charge strength, it is necessary 
to take steps to control the time-accumulated color emitted by each source point. 
One improvement included in the examples is to add color only to the first particle 
found within the source origin. Color collisions subsequently smooth it over all 
particles present at that node. This reduces the problem to occuring only when a 
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node has no particles at all and no color is added. Such empty nodes occur quite 
infrequently, so that the undesired effect is greatly reduced. However, the problem 
is still present and will influence the long time averages needed for accuracy of the 
method. The problem is totally eliminated by keeping track of the net accumulated 
color over the whole system, and adjusting the sources in a way that keeps the total 
color near zero. The effective source strengths remain in the correct proportion 
provided that the adjustment to each charge is in proportion to its original value. 
For a small number of source points this is an effective means of controlling the 
source strengths and involves very little computational overhead. However, for 
more complex distributions of source, efficient methods for equilibrating the source 
strengths remain to be developed. 

The most intriguing question at this early stage of the development and testing 
of the CA Poisson model is whether it stands to be competitive with more tradi- 
tional methods for solving this type of equation. The theory indicates that the CA 
solutions should approach the proper solutions with controllable accuracy and an 
approximately known rate. Potential advantages of the CA method lie in its 
exclusive use of integer and Boolean microscopic variables and in the parallel 
nature of the algorithm. Thus the method, at the microscopic level, is essentially 
free from round-off errors and numerical instabilities. Since the method relaxes to 
the steady state solution in a number of iterations of the order of the total number 
of nodes, it may not be advantageous in terms of speed when compared to more 
traditional methods on scalar computers. In spite of its cellular automaton nature, 
this numerical scheme has some similarity to relaxation methods 1115). It is also 
second-order accurate in the ratio of the CA cell size to the scale for typical varia- 
tions of the macroscopic potential. In fact it is not difficult to see that the CA 
model, when run with n = 6 and color collisions that act at every time step, is quite 
close to a Jacobi method on a hexagonal grid. The Jacobi method is too slow to 
be useful in most finite difference applications. However, it should be noticed that 
this analogy is obtained for a choice of CA parameters for which the CA relaxation 
time is at a maximum, since the diffusivity is at a minimum at n = 6. 

Moreover, there is the possibility that the efficiency and relative speed of the CA 
method may be much greater when it is run on computers with massively parallel 
architectures. Moreover, there seems to be no serious impediment to generalizing 
the present model to three dimensions, for which case traditional methods may be 
less effective than in two dimensions. In three dimensions the CA would evolve on 
a 3-dimensional projection of a 4-dimensional face centered hypercubic lattice 
(FCHC) [2], or possibly on a simple 3-dimensional lattice, since potential inac- 
curacies in the time development of v are probably unimportant provided that 
v = 0. The CA model also handles complex boundary shapes and complex combina- 
tions of boundary conditions in a straightforward manner and may provide some 
advantage in these respects as well. 

Apart from issues of the potential usefulness of the model in practical calcula- 
tions, the analytical theory of the Poisson CA that we have developed here 
demonstrates that still another [l-3, 6, S] of the fundamental equations of physics 
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is computable from CA microdynamics. The described dynamical behavior of the 
multicolor CA prior to attainment of the steady state is also a generalization of the 
passive tracer CA [7] which is of interest in its own right and may be useful in 
constructing CA models of still other physical systems. 

APPENDIX: EXPLICIT FORMS OF 
THE COLLISION INTEGRAL AND THE DIFFUSIVITY 

Here we assemble the explicit form of the collision integral Q: z (As) which is 
needed to completely specify the time evolution of (M:) in Eq. (25). The algebraic 
form of the collision integral is not needed to deduce most aspects of the macro- 
scopic behavior of the multicolor CA. For example, the results given in Section 4 
were based on Eq. (12), in which 52: does not appear. Furthermore, the crucial 
statement that Qg is linear in the distribution (Mz) was proven on general 
grounds in Section 5 and then used to deduce that the diffusivity depends only on 
the density. Construction of the explicit form of Qz provides a verification of these 
arguments and leads to an explicit determination of D(n), which is given below for 
two limiting cases. 

The advantage of using the subparticle representation is especially clear in 
writing down the form of the collision integral. If we were to assemble a collision 
integral in the particle-color representation (using the color index O) we would have 
to write down all possible collisions for all different color values. Moreover, the 
color value for each particle is not fixed. Therefore, as the number of colors (the 
maximum value of g becomes large, it is practically impossible to explicitly write 
the collision integral. However, using the subparticle representation, the collision 
integral has a much simpler form, since there are only two different subparticle spin 
(5) values involved no matter how many color (a) values are implied at the particle 
level of description. Furthermore, subparticles do not change their spin while 
scattering. Since we have shown that multicolor CA systems containing arbitrary 
numbers of CJ values can always be decomposed into subparticle spin subsystems, 
the dynamics of the multicolor system may be established by finding the dynamics 
of the appropriate spin subsystem. 

The general form of the subparticle collision integral can be constructed as 
follows. Based on the analysis in the hydro-CA [a], if the colorblind particle 
distribution reaches an equilibrium, the probability P(S) of finding a configuration 
S( = {NC,; a= 1, . ..) 6)) at a node is “factorized,” i.e., it may be written as, 

where ,f, 3 <N,). Thus the probability of finding a “t” subparticle in state P, at this 
node having configuration S will be 

(30) 
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The quantity (Mz)/(2Mof,) can be interpreted as the probability of finding a “5” 
subparticle in state g, once it is known that there is a particle in this state. As in 
the hydero-CA, we define G(S- S’) to be the probability that collisions produce a 
transition from a configuration S (= {N,; a= 1, . . . . 6)) to a new configuration 
S’(={Ni, a = 1, . . . . 6)) [2, 111. The transition probability G satisfies a normaliza- 
tion condition ES, G( S + S’) = 1, since there is at least one configuration, including 
S itself, into which the initial state S must transfer. It also satisfies the “semi- 
detailed balance” condition, Es G( S -+ S’) = 1. Moreover, the transition probability 
must satisfy the mass and momentum conservation laws, thus 

where B, equals 1 or g,. Since by construction the color-blind particle evolution 
exactly follows the hydro-CA rules, the transition probability is the same as in the 
hydro-CA [2, 111 with regard to transitions between momentum states E,. To 
specify the redistribution of passive spins after a collision, there is an additional 
quantity needed. We define HS(a, -+ a,) to be the probability of a “r” subparticle, 
originally at state C,,, to transfer into state err * . If the spin collisions are chosen to 
produce equipartition of available spin among available momentum states, we can 
immediately obtain that 

N’ N’ 
H’(a, -+a,)=fiNhg$$. 

Therefore C,, H “(ai + u2) = 1. Using these properties, we can write the relationship 
between the averaged number of subparticles in state I?, after a collision with the 
distributions before the collision, 

The collision integral Qg is defined to be the difference between the average 
number of subparticles with spin 4 in state C, before and after a collision, i.e., 
Qt z ( MLr) - (Mi). Consequently, using (31), we can write down the explicit 
form for the collision integral as 

$+2M,~ c G(S+S’) 
s S’ 

-N, e nfp(l --fh)(‘- *f, 
h 

(32) 

where we have used the identity [2, 111, 

,f, = c N, n fp( 1 --fh)(’ “‘). 
s h 



CELLULAR AUTOMATON POISSON SOLVER 465 

Equation (22) defines the general form of the multicolor CA collision integral with 
the colorblind particle distribution f, assumed to be near equilibrium but with 
arbitrary particle density n. 

The collision integral Szz constructed above explicitly satisfies the relations 

and 

where 52, is the hydro-CA [2, 3, 1 l] collision integral and W,, ac is a (6 x 6) 
circulant matrix [3, 123. These two relations were justified in Section 5 using 
general conservation and symmetry arguments. The latter relation is the crucial 
linearity property of the collision integral that permits the deduction that the 
diffusivity D(n) depends only on the particle density. 

There are two special cases for which we have calculated D(n), namely, n < 4 and 
n N 6. Correspondingly, their rate of transition W,, uI can be explicitly written 
respectively, as 

Wa,d=( l-i)I circ { - [:+&I, [$+ ,,,a’,,], 

11 
and 

W 
1 n5 

.,.,=jj 0 -circ{-5, 6 1, 1, 1, 1, l}, 

(33) 

where “circ” indicates that the 6 x 6 matrix W, as is a circulant matrix [3, 121. The 
exact inverse of W,,., is easily computed for’ these cases and used to solve the 
matrix equation (28), using the scale separation approximations described in 
Section 5. The results are, for n < 4 [7, 131, 

and, for n N 6, 
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